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It is well known that existing gyrocompasses possess two possible posi- 

tions of equilibrium. If the velocity deviations and the deviations of 
damping are neglected, in the first position the momentum vector of the 
gyroscopic system is directed north, in the second position it is 
directed south. The first position is the principal working position of 
the gyrocompass and it is always stable. In existing gyrocompasses the 
second position is unstable. 

Fig. 1. 

We shall demonstrate that a gyrocom- 
pass, with parameters causing a consider- 
able increase of its free vibration 
period, may have in general four posi- 
tions of equilibrium. A gyrocompass work- 
ing on the Earth’s surface will display 
this phenomenon when its period of free 
vibrations about its principal (northern) 
position of equilibrium is larger than 
17 hours. 

We shall consider a gyrocompass with 
one rotor, resembling the first Sperry 
gsrocompass (study of other types of 
gyrocompasses will disclose similar pro- 
perties). In Fig. 1 the numeral f indi- 

cates the gyroscope’s casing which contains the spinning rotor, the 
numeral 2 indicates the outer gimbal frame, the numeral 3 the correcting 
pendul urn. 

Moments arising from the pendulum swinging from its vertical position 
are transmitted to the gyroscope through the eccentrically located 
pin 4. 
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The pendulum is on a separate suspension and has a tracking system. 
The tracking system combines the axis of the pendulum’s suspension 5 with 
the axis of the casing’s suspension in the 
outer frame. 

The orientation of the axis of the 
gyroscope is arbitrary. We shall introduce 
two coordinate systems with common origin 
at the rotor’s center of gravity 0. 

The system xeyOze is a geographically 
oriented trihedron on the Earth’s surface 
(Fig. 2). 

The ze-axis is horizontal and directed 
north, the ye-axis is vertical and direct- 
ed upwards. If the gyrocompass is on a 
stationary base, then the angular velocity Fig. 2. 
of the trihedron zey,,~e with respect to an 
inertial system would equal the angular 
velocity of the Earth’s daily rotation 0 . Resolving the Earth’s angular 
velocity vector o into the local horizoital (0 ‘3 and vertical (~,‘~j 
components, we cai obtain the z,,- and the ye-co&onents. 

The xyz-system is fixed in the casing; the r-axis coincides with the 
rotation axis of the casing, the z-axis coincides with the angular 
momentum vector of the gyroscope. We shall assume that the axis of the 
outer gimbal frame is stabilized in the direction of the local vertical, 
that is, in the direction of ye. With this assumption the x-axis will 
always be in the xeye-plane. The orientation of the xyz-system with re- 
spect to the xeyez,, -system is determined through angles a and B. The 
angle a is the rotation angle of the outer gimbal frame about its sus- 
pension axis, the angle p is the rotation angle of the casing with respect 
to the outer frame. The angles a and /3 are measured from this position 
of the gyroscope when the z-axis coincides with +,-axis. The positive 
direction for the angles a and @ is indicated in Fig. 2. 

The absolute angular velocity (velocity with respect to an inertial 
system) of the trihedron xyz is 

0=&l *’ + co*” _1- a -+ fl 

. 
The meaning of the vectors (; and @ just introduced here is clear from 

Fig. 2. The X- and y-components of the vector o are 
L 

0% = - o*’ siu r - 3, 0+/=0* “Cos R --o*‘co~~ sin R+hcos p 
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We assume that the gyroscope is in a steady regime 

Here Mzr; is the z-component of the principal moment of the external 
forces acting on the gyroscope, r is the angular momentum of the gyro- 
scope. 

Assuming that the tracking system which connects the axis of the cor- 
recting pendulum with the casing’s axis is mounted without friction, we 
find the X-, y-, and z-components of the pendulum’s moment. We have 

Here p is the weight of the pendulum, l is the distance from the sus- 
pension axis to the center of gravity of the pendulum. The meaning of II 

and I, is clear from Fig. 3. 

The moments of friction in the suspension axes 
of the gyroscope and of the pendulum will be 
neglected. In the region corresponding to these 

5 values of p which we shall consider here, the re- 
action moment I,r acting on the outer gimbal frame 
can reach considerable values. In our gyrocompass 
this moment equals zero for all values of ,6 with 
the exception of 8 = * ~12. 

Fig. 3. Let us assume that I, f 0. With frictionless 
suspension axes of the gyroscope, the vector moment 

1II, should be perpendicular to the plane of the outer frame. This moment 
has a finite t-component for all values of p. with the exception of 
p = f r/2. If we take into consideration (2). we can see that this con- 
tradicts the condition (1). Consequently, Y, must equal zero for all 
values of @, with the exception of ,8 = f n/2. 

The x- and y-components of the equations of motion of the gyroscope 
are 

Here k = pi, h = pif,/f,. We shall determine all possible positions 
of equilibrium of the gyroscope. Setting & = fi = 0. we obtain 
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Here a0 and p, are the values of a and p in a position of equilibrium. 

We shall consider first the positions of equilibrium of the gyrocom- 
pass which occur when the angular momentum vector of the gyroscope is 
directed approximately north or south. Near the northern position of 
equilibrium the angles a and p are small. 

We obtain 

Hence 
(5) 

The relation (5) gives the value of the normal angle of elevation of 
the gyroscope’s axis with respect to the plane of the horizon (the level 
plane) and the value of the damping deviation. We note that the obtained 
values of a0 and &, will not remain small if the parameters of the 
instrument are allowed to vary within large bounds. The case when the 
parameter C is allowed to decrease considerably will be studied present- 
ly. The linearization of the equations (4) may not be justified in this 
case. 

While considering small values of k we shall also assume that the in- 
equality 0 “<< 0 ’ is satisfied. This means that the gyrocompass works 
in low lat!tudes.*With the above inequality satisfied, the linearization 
of the equations (4) near the northern position of equilibrium Is justi- 
fied for all values of k. 

Linearizing similarly the equations of motion (3) we find 

We shall turn our attention now to the equations which control per- 
turbations 

:.A& - (ro*’ + k) bp == 0, I’AB -i_ I’o,‘A.a -+ hA3 = 0 (6! 

Here ha = a - a,, and Ap = p - & are the perturbations of a and /3. 
The characteristic equation of the system (6) 

shows that the northern position of equilibrium of the gyrocompass axis 
is asymptotically stable for all positive values of h, k and r. In order 
to study the southern position of equilibrium we make the substitution 
a’ = w - a. Assuming that the angles a’ and @ are small, we obtain 
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ri’ + (k - 1’6,*‘) 3 - l‘61 ’ = 0, 
* 

1.3 + 123 + 1’6, ‘a’ = 0 

In the position of equilibrium 

h 0 ” 
t %I’=-- k_-l.o, o, I 

? _. ro ” 
J” - *- 

k-ro ’ * * 
(8) 

The perturbed equations are 

ri\a, + (k - 

The characteristic 

l-w*‘) Afi = 0, 

equation 

rA3 ,- hA3 + I’o*‘Aa’ = 0 

o*’ (k - I‘o, ‘) 
0 

1 

shows that the investigated position of equilibrium is unstable only 
when k >/ ro ‘; When k < ro ‘i then the position of equilibrium (8) be- 
comes stableband the kinetic*axis of the gyrocompass is capable of being 
stabilized in southern position. 

Using Equation (7) and assuming that the coefficient h which deter- 
mines the damping of vibrations is small, we can calculate the period 
of free vibrations of the instrument near its principal (northern) posi- 
tion of equilibrium from the formula 

7’= 2n 

1 ‘-(h*fl + k) wI’ / 17 

Substituting in the above formula k = ro ‘i we find the free vibra- 
tions of the instrument in this unstable souihern position of equilibrium 
which is on the very border of the region of instability. We obtain 

Consider for example the gyrocompass placed at the Earth’s equator. 
Substituting o ’ = o = 7.27 x 16’ set -’ we obtain 

l l 

TI = 16 hrs 58.3 min = 17 hrs 

Let us consider Equations (4). Eliminating from them the angle a we 
obtain 
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This equation can have in general four real roots, therefore we can 
expect in a general case that the axis of a gyrocompass will have four 
POSitiOns of equilibrium in space. Consider again a gyrocompass placed 
at the equator. In this case o “= 0, o ’ = o., * . and the equation (9) will 
take the form 

Solving Equation (10) we find 

Utilizing the above expression, we can obtain the following four 
tions of the system (4): 

(10) 

solu- 

I; \ 
a01 = 0, r*: = ;[, a03 = 

-1’ 
cos 

i 

k ‘i al34 == - 
-1 / 

1‘0, 
cos 

\ 
‘_I‘o,l 

_.._ 
PO1 = 0, ,302 = 0, PM= sin- d 12~*2_kZ 

h 

The positions of equilibrium corresponding to the first two solutions 
have already been discussed. The position @,,I, &,I) is the principal 

(northern) position of equilibrium of 
a gyrocompass and it is always stable. 
The position of equilibrium (ae2, /??,,g) 
corresponds to the southern position 
of equilibrium of the gyrocompass axis, 
and it is unstable when k 2 rw and 
stable when k < ro . Two new pisitions 
of equilibrium cor&ponding to the 
solutions (a03, SOS) and (aor Is,,) are 
located on the phase sphere (a, @); 
when looking at it from the side of the 
principal position of equilibrium, that 
is, from the side of the z,,-axis (Fig. 
4), they are on its rear half. The 

Fig. 4. 
positions of equilibrium (ao3, ,8,,) 

and (S,,4, &,) are located symmetric- 
ally with respect to the zO-axis. These 
positions of equilibrium arise only 

when k < ro ‘i that is. only when the position of equilibrium (a,,g, rBo2) 
becomes stabie. 
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Let us investigate the stability of the position of equilibrium (ae3, 

Pm) and (aOl. p,,J. E P d x an ing the terms in Equations (3) in series 
about some position of equilibrium, say (a,, p,.,), and neglecting all 
terms of third order and higher, we obtain 

A$:- --o * [sin u,, :- (‘1)s a,Aa -1. &!_ sin /3,, _1- & cos &,AB’J 
* 

or, using the condition (4) 

Here ha = a - aO, A/3 = fi - &, are small deviations of a and p from 
their equilibrium values. The characteristic equation of the perturbed 
system of equations is 

substituting in (11) the values of trigonometric functions correspond- 
ing to the position of equilibrium (Q,,~, p03) we obtain 

(12) 

The position of equilibrium (a03, @es) exists only when k < rw+, 

therefore if it exists it must be unstable. Since the free term in the 
characteristic equation (13) is negative, we have a saddle point at the 
position of equilibrium (a,,3, po3). Exactly the same results are ob- 
tained for the position of equilibrium (a,,4, po4). 

Thus, when the period of free vibrations near the principal (northern) 

position of equilibrium reaches seventeen hours, then a gyrocompass of 

the investigated type and located at the equator can have four different 

positions of equilibrium. Two of them occur at the northern or southern 

orientations of the kinetic axis of a gyrocompass, and they are stable. 

The remaining two positions of equilibrium are located on the southern 
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half of the space hemisphere and are special points of the saddle-type. 

Figure 5 shows an example of mapping of the phase sphere on the (a, 

p) phase plane for a gyroscope of the investigated type. The inequality 
k < ro*. necessary for the existence of the positions of equilibrium 

-r&P 

Fig. 5. 

(dog. &J and (ae4, @,,) is assumed here to be satisfied. The mapping 
shows four positions of equilibrium of the instrument, The points (+180.0) 
and (-$80.0) represent the same position of equilibrium (aox, &z) (the 
southern one), and here it is stable. Thick lines denote separatrices, 
which separate the region of stability of the principal position of equi- 

librium (ool, &, f rom the region of stability (aox, &,). Reverting to 
the equations of motion (3), we can easily convince ourselves that on 
the sphere u, /3 the separatrices are arcs of the large circles given by 

the parametric equations 

a = cosnl (-k/I’m,) and fI= - -l cos (- -~/~~~) 

In Fig. 4 the separatrices are thickly drawn curves, and the region 
of stability of the position of equilibrium (a02, f102) is shaded. 

Translated &y T.L. 


